
Code in n8n Cookbook

Date and time with Luxon

Luxon is a JavaScript library that makes it easier to work with date and

time. For full details of how to use Luxon, refer to Luxon's

documentation.

n8n passes dates between nodes as strings, so you need to parse

them. Luxon makes this easier.

Luxon is a JavaScript library. The two convenience variables created by n8n are available when

using Python in the Code node, but their functionality is limited:

You can't perform Luxon operations on these variables. For example, there is no Python

equivalent for $today.minus(...) .

The generic Luxon functionality, such as Convert date string to Luxon, isn't available for

Python users.

Variables

n8n uses Luxon to provide two custom variables:

now : a Luxon object containing the current timestamp. Equivalent

to DateTime.now() .

today : a Luxon object containing the current timestamp, rounded

down to the day. Equivalent to DateTime.now().set({ hour: 0,

minute: 0, second: 0, millisecond: 0 }) .

Python support

http://127.0.0.1:8000/code/
http://127.0.0.1:8000/code/cookbook/luxon/
https://github.com/moment/luxon/
https://moment.github.io/luxon/#/?id=luxon
https://moment.github.io/luxon/#/?id=luxon

Note that these variables can return different time formats when cast

as a string. This is the same behavior as Luxon's DateTime.now() .

n8n provides built-in convenience functions to support data

transformation in expressions for dates. Refer to Data transformation

functions | Dates for more information.

Date and time behavior in n8n

Be aware of the following:

Expressions (JavaScript)

Code node (JavaScript)

Code node (Python)

1
2
3
4
5
6

{{$now}}
// n8n displays the ISO formatted timestamp
// For example 2022-03-09T14:02:37.065+00:00
{{"Today's date is " + $now}}
// n8n displays "Today's date is <unix timestamp>"
// For example "Today's date is 1646834498755"

1
2
3
4
5
6

$now
// n8n displays <ISO formatted timestamp>
// For example 2022-03-09T14:00:25.058+00:00
let rightNow = "Today's date is " + $now
// n8n displays "Today's date is <unix timestamp>"
// For example "Today's date is 1646834498755"

1
2
3
4
5
6

_now
n8n displays <ISO formatted timestamp>
For example 2022-03-09T14:00:25.058+00:00
rightNow = "Today's date is " + str(_now)
n8n displays "Today's date is <unix timestamp>"
For example "Today's date is 1646834498755"

http://127.0.0.1:8000/code/builtin/data-transformation-functions/dates/
http://127.0.0.1:8000/code/builtin/data-transformation-functions/dates/

In a workflow, n8n converts dates and times to strings between

nodes. Keep this in mind when doing arithmetic on dates and

times from other nodes.

With vanilla JavaScript, you can convert a string to a date with new

Date('2019-06-23') . In Luxon, you must use a function explicitly

stating the format, such as DateTime.fromISO('2019-06-23') or

DateTime.fromFormat("23-06-2019", "dd-MM-yyyy") .

Setting the timezone in n8n

Luxon uses the n8n timezone. This value is either:

Default: America/New York

A custom timezone for your n8n instance, set using the

GENERIC_TIMEZONE environment variable.

A custom timezone for an individual workflow, configured in

workflow settings.

Common tasks

This section provides examples for some common operations. More

examples, and detailed guidance, are available in Luxon's own

documentation.

Convert date string to Luxon

You can convert date strings and other date formats to a Luxon

DateTime object. You can convert from standard formats and from

arbitrary strings.

https://moment.github.io/luxon/#/?id=luxon
https://moment.github.io/luxon/#/?id=luxon

With vanilla JavaScript, you can convert a string to a date with new Date('2019-06-23') . In

Luxon, you must use a function explicitly stating the format, such as DateTime.fromISO('2019-

06-23') or DateTime.fromFormat("23-06-2019", "dd-MM-yyyy") .

If you have a date in a supported standard technical format:

Most dates use fromISO() . This creates a Luxon DateTime from an ISO

8601 string. For example:

Luxon's API documentation has more information on fromISO.

Luxon provides functions to handle conversions for a range of

formats. Refer to Luxon's guide to Parsing technical formats for

details.

If you have a date as a string that doesn't use a standard format:

Use Luxon's Ad-hoc parsing. To do this, use the fromFormat()

function, providing the string and a set of tokens that describe the

format.

For example, you have n8n's founding date, 23rd June 2019, formatted

as 23-06-2019 . You want to turn this into a Luxon object:

A difference between Luxon DateTime and JavaScript Date

Expressions (JavaScript)

Code node (JavaScript)

1 {{DateTime.fromISO('2019-06-23T00:00:00.00')}}

1 let luxonDateTime = DateTime.fromISO('2019-06-
23T00:00:00.00')

Expressions (JavaScript)

https://moment.github.io/luxon/api-docs/index.html#datetimefromiso
https://moment.github.io/luxon/#/parsing?id=parsing-technical-formats
https://moment.github.io/luxon/#/parsing?id=ad-hoc-parsing
https://moment.github.io/luxon/#/parsing?id=table-of-tokens

When using ad-hoc parsing, note Luxon's warning about Limitations. If

you see unexpected results, try their Debugging guide.

Get n days from today

Get a number of days before or after today.

Code node (JavaScript)

1 {{DateTime.fromFormat("23-06-2019", "dd-MM-yyyy")}}

1 let newFormat = DateTime.fromFormat("23-06-2019", "dd-MM-
yyyy")

Expressions (JavaScript)

For example, you want to set a field to always show the date seven

days before the current date.

In the expressions editor, enter:

On the 23rd June 2019, this returns [Object: "2019-06-

16T00:00:00.000+00:00"] .

This example uses n8n's custom variable $today for convenience. It's

the equivalent of DateTime.now().set({ hour: 0, minute: 0, second:

0, millisecond: 0 }).minus({days: 7}) .

Code node (JavaScript)

For example, you want a variable containing the date seven days

before the current date.

1 {{$today.minus({days: 7})}}

https://moment.github.io/luxon/#/parsing?id=limitations
https://moment.github.io/luxon/#/parsing?id=debugging

For more detailed information and examples, refer to:

Luxon's guide to math

Their API documentation on DateTime plus and DateTime minus

Create human-readable dates

In Get n days from today, the example gets the date seven days

before the current date, and returns it as [Object: "yyyy-mm-dd-

T00:00:00.000+00:00"] (for expressions) or yyyy-mm-dd-

T00:00:00.000+00:00 (in the Code node). To make this more readable,

you can use Luxon's formatting functions.

For example, you want the field containing the date to be formatted as

DD/MM/YYYY, so that on the 23rd June 2019, it returns 23/06/2019 .

This expression gets the date seven days before today, and converts it

to the DD/MM/YYYY format.

In the code editor, enter:

On the 23rd June 2019, this returns [Object: "2019-06-

16T00:00:00.000+00:00"] .

This example uses n8n's custom variable $today for convenience. It's

the equivalent of DateTime.now().set({ hour: 0, minute: 0, second:

0, millisecond: 0 }).minus({days: 7}) .

1 let sevenDaysAgo = $today.minus({days: 7})

Expressions (JavaScript)

1 {{$today.minus({days: 7}).toLocaleString()}}

https://moment.github.io/luxon/#/math
https://moment.github.io/luxon/api-docs/index.html#datetimeplus
https://moment.github.io/luxon/api-docs/index.html#datetimeminus

You can alter the format. For example:

Refer to Luxon's guide on toLocaleString (strings for humans) for more

information.

Get the time between two dates

To get the time between two dates, use Luxon's diffs feature. This

subtracts one date from another and returns a duration.

For example, get the number of months between two dates:

Code node (JavaScript)

1 let readableSevenDaysAgo = $today.minus({days:
7}).toLocaleString()

Expressions (JavaScript)

On 23rd June 2019, this returns "16 June 2019".

Code node (JavaScript)

On 23rd June 2019, this returns "16 June 2019".

1 {{$today.minus({days: 7}).toLocaleString({month: 'long',
day: 'numeric', year: 'numeric'})}}

1 let readableSevenDaysAgo = $today.minus({days:
7}).toLocaleString({month: 'long', day: 'numeric', year:
'numeric'})

Expressions (JavaScript)

1 {{DateTime.fromISO('2019-06-
23').diff(DateTime.fromISO('2019-05-23'),

https://moment.github.io/luxon/#/formatting?id=tolocalestring-strings-for-humans

Refer to Luxon's Diffs for more information.

A longer example: How many days to Christmas?

This example brings together several Luxon features, uses JMESPath,

and does some basic string manipulation.

The scenario: you want a countdown to 25th December. Every day, it

should tell you the number of days remaining to Christmas. You don't

want to update it for next year - it needs to seamlessly work for every

year.

This returns [Object: {"months":1}] .

Code node (JavaScript)

This returns {"months":1} .

'months').toObject()}}

1 let monthsBetweenDates = DateTime.fromISO('2019-06-
23').diff(DateTime.fromISO('2019-05-23'),
'months').toObject()

Expressions (JavaScript)

This outputs "There are <number of days> days to Christmas!" . For

example, on 9th March, it outputs "There are 291 days to Christmas!".

A detailed explanation of what the expression does:

{{ : indicates the start of the expression.

1 {{"There are " + $today.diff(DateTime.fromISO($today.year +
'-12-25'), 'days').toObject().days.toString().substring(1)
+ " days to Christmas!"}}

https://moment.github.io/luxon/#/math?id=diffs

"There are " : a string.

+ : used to join two strings.

$today.diff() : This is similar to the example in Get the time

between two dates, but it uses n8n's custom $today variable.

DateTime.fromISO($today.year + '-12-25'), 'days' : this part gets

the current year using $today.year , turns it into an ISO string

along with the month and date, and then takes the whole ISO

string and converts it to a Luxon DateTime data structure. It also

tells Luxon that you want the duration in days.

toObject() turns the result of diff() into a more usable object. At

this point, the expression returns [Object: {"days":-<number-of-

days>}] . For example, on 9th March, [Object: {"days":-291}] .

.days uses JMESPath syntax to retrieve just the number of days

from the object. For more information on using JMESPath with

n8n, refer to our JMESpath documentation. This gives you the

number of days to Christmas, as a negative number.

.toString().substring(1) turns the number into a string and

removes the - .

+ " days to Christmas!" : another string, with a + to join it to the

previous string.

}} : indicates the end of the expression.

Code node (JavaScript)

This outputs "There are <number of days> days to Christmas!" . For

example, on 9th March, it outputs "There are 291 days to Christmas!".

1 let daysToChristmas = "There are " +
$today.diff(DateTime.fromISO($today.year + '-12-25'),
'days').toObject().days.toString().substring(1) + " days to
Christmas!";

http://127.0.0.1:8000/code/cookbook/jmespath/

A detailed explanation of what the code does:

"There are " : a string.

+ : used to join two strings.

$today.diff() : This is similar to the example in Get the time

between two dates, but it uses n8n's custom $today variable.

DateTime.fromISO($today.year + '-12-25'), 'days' : this part gets

the current year using $today.year , turns it into an ISO string

along with the month and date, and then takes the whole ISO

string and converts it to a Luxon DateTime data structure. It also

tells Luxon that you want the duration in days.

toObject() turns the result of diff() into a more usable object. At

this point, the expression returns [Object: {"days":-<number-of-

days>}] . For example, on 9th March, [Object: {"days":-291}] .

.days uses JMESPath syntax to retrieve just the number of days

from the object. For more information on using JMESPath with

n8n, refer to our JMESpath documentation. This gives you the

number of days to Christmas, as a negative number.

.toString().substring(1) turns the number into a string and

removes the - .

+ " days to Christmas!" : another string, with a + to join it to the

previous string.

http://127.0.0.1:8000/code/cookbook/jmespath/

